Multi-party Agile Quantum Key Distribution Network with a Broadband Fiber-based Entangled Source

نویسندگان

  • E. Y. Zhu
  • C. Corbari
  • A. V. Gladyshev
  • P. G. Kazansky
  • H. K. Lo
  • L. Qian
چکیده

A reconfigurable, multi-party quantum key distribution scheme is experimentally demonstrated by utilizing a poled fiber-based source of broadband polarization-entangled photon pairs and dense wavelengthdivision multiplexing (DWDM). The large bandwidth (> 90 nm centered about 1555 nm) and highly spectrally-correlated nature of the entangled source is exploited to allow for the generation of more than 25 frequencyconjugate entangled pairs when aligned to the standard 200-GHz ITU grid. Such a network can serve more than 50 users simultaneously, allowing any one user on the network to establish a QKD link with any other user through wavelength-selective switching. The entangled pairs are delivered over 40 km of actual fiber (equivalent to 120 km of fiber based on channel-loss experienced), and a secure key rate of more than 20 bits/s per bi-party is observed. © 2015 Optical Society of America OCIS codes: (270.5568) Quantum cryptography; (060.1810) Buffers, couplers, routers, switches, and multiplexers; (190.4370) Nonlinear optics, fibers References and links 1. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoystate quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007). 2. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek et al., “Entanglement-based quantum communication over 144 km,” Nature physics 3, 481–486 (2007). 3. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New Journal of Physics 11, 045013 (2009). 4. C. H. Bennett, G. Brassard et al., “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,” , vol. 175 (New York, 1984), vol. 175. 5. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). 6. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). 7. C. Elliott, “Building the quantum network,” New Journal of Physics 4, 46 (2002). 8. M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The secoqc quantum key distribution network in vienna,” New Journal of Physics 11, 075001 (2009). 9. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the tokyo qkd network,” Opt. Express 19, 10387–10409 (2011). 10. R. J. Hughes, J. E. Nordholt, K. P. McCabe, R. T. Newell, C. G. Peterson, and R. D. Somma, “Network-centric quantum communications with application to critical infrastructure protection,” arXiv preprint arXiv:1305.0305 (2013). 11. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011). 12. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013). 13. W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, “Field experiment on a star type metropolitan quantum key distribution network,” Photonics Technology Letters, IEEE 21, 575–577 (2009). 14. S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key distribution network,” Opt. Lett. 35, 2454–2456 (2010). 15. J. Oh, C. Antonelli, and M. Brodsky, “Coincidence rates for photon pairs in wdm environment,” Journal of Lightwave Technology 29, 324–329 (2011). 16. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber,” Opt. Express 16, 22099–22104 (2008). 17. I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, and H. Hübel, “Demonstration of active routing of entanglement in a multi-user network,” Opt. Express 21, 29013–29024 (2013). 18. E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012). 19. M. Shtaif, C. Antonelli, and M. Brodsky, “Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons,” Opt. Express 19, 1728–1733 (2011). 20. H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. ichi Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18, 16777–16787 (2010). 21. S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 30, 143–148 (2004). 22. E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Poled-fiber source of broadband polarization-entangled photon pairs,” Opt. Lett. 38, 4397– 4400 (2013). 23. “Spectral grids for wdm applications: Dwdm frequency grid,” ITU-T Recommendation G.694.1. (2012). 24. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009). 25. E. Y. Zhu, C. Corbari, P. Kazansky, and L. Qian, “Self-calibrating fiber spectrometer for the measurement of broadband downconverted photon pairs,” arXiv preprint arXiv:1505.01226 (2015). 26. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Information and Computation 4, 325–360 (2004). 27. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000). 28. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in “Advances in Cryptology EUROCRYPT 93,” , vol. 765 of Lecture Notes in Computer Science, T. Helleseth, ed. (Springer Berlin Heidelberg, 1994), pp. 410–423. 29. L. Comandar, B. Fröhlich, J. Dynes, A. Sharpe, M. Lucamarini, Z. Yuan, R. Penty, and A. Shields, “Gigahertzgated ingaas/inp single-photon detector with detection efficiency exceeding 55% at 1550 nm,” Journal of Applied Physics 117, 083109 (2015). 30. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an ingaas/inp avalanche diode gated at 1.25 ghz,” Applied Physics Letters 102, 141104 (2013). 31. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013). 32. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits et al., “Photon-efficient quantum key distribution using time–energy entanglement with highdimensional encoding,” New Journal of Physics 17, 022002 (2015). Quantum key distribution (QKD) offers, in principle, an unconditionally secure method for two parties to generate a private cryptographic key. Many point-to-point (PTP) demonstrations using weak-coherent source-based [1] and entanglement-based [2, 3] quantum-cryptographic protocols such as the vaunted BB84 [4], BBM92 [5] and E91 [6] (respectively) have been demonstrated. However, PTP connections do not provide an efficient method to connect multiple users, and efforts thusfar in extending PTP links into multi-user networks have proven to be cumbersome at best. To that end, QKD networks based upon the hub-and-spoke model, where many end-users can be connected to a trusted node [7, 8, 9, 10], are used. Should any one end-user wish to communicate with another user secretly, a random secret key is first generated at the node, then QKD is performed between the node and each user separately; finally, the key is sent to each end-user classically using the QKD key material as a one-time pad. However, the trust model for such a network topology is inherently problematic, as any security vulnerability on the node will compromise the entire network. Additionally, time-multiplexing is often required in such circumstances to service multiple users [11, 12], and only one end-user can perform QKD with the central node at a time. Other schemes [13, 14] involving wavelength-division multiplexing (WDM) have been introduced where individual users on a PTP network can perform QKD with one another simply by addressing each other at different laser wavelengths. All users are equivalent on the network, and no central trusted node is required. However, each user must have both single photon detectors and laser sources at their disposal, and the incremental cost of adding a new user to an N-user network requires increasing the number of laser wavelengths available to each user to N + 1. In contrast, we show that a reconfigurable multi-user QKD network utilizing the distribution of polarization-entangled photon pairs from a (potentially untrustworthy) central office can be realized efficiently using a single broadband polarization-entangled source (Fig. 1). The entangled photon pairs generated from the source are highly spectrally-anticorrelated (Fig. 2), which allows for multiple (N) frequency-conjugate pairs to be carved out of the spectrum and distributed to N (> 25) pairs of users simultaneously. With a 2N × 2N wavelength-selective switch (WSS) to perform dynamic spectrum allocation [15], and without any additional hardware resource, any user on the network can perform QKD with any other user. Additionally, our scheme allows multiple users (2N > 50) to perform QKD simultaneously; when combined with time-multiplexing, such a scheme can extend the number of users well beyond what the bandwidth of the source can accommodate. Previous works [16, 17] demonstrated the distribution of polarization-entangled photon pairs using WDM technology. However, QKD was not performed in either of those cases. Fiber spans of 10 km were used in [16], while [17] did not distribute the entangled photon pairs over any appreciable length (> 500 metres) of fiber. Additionally, both works employed PPLN-based correlated photon pair sources combined interferometrically (Sagnac loop in [16], and type-0 sandwich in [17]) to create entangled pairs, which are markedly more complex experimentally than the poled fiber source [18] used in this work. The usable bandwidths of both sources (10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-Q...

متن کامل

3-3 Generation of Telecom-band Quantum Entangled Photon Pairs and its Application to Quantum Key Distribution

The technology for generating quantum entangled photon pairs is an important element in the construction of quantum information systems such as quantum key distribution and quantum computers. Previously, a quantum entangled pair generation source using spontaneous parametric down conversion (SPDC) was developed for the short wavelength band (0.7-0.8μm) and has since been employed in various qua...

متن کامل

Combinatorial Approaches in Quantum Information Theory

Quantum entanglement is one of the most remarkable aspects of quantum physics. If two particles are in a entangled state, then, even if the particles are physically separated by a great distance, they behave in some repects as a single entity. Entanglement is a key resource for quantum information processing and spatially separated entangled pairs of particles have been used for numerous purpos...

متن کامل

How Can Quasi-trusted Nodes Help to Securely Relay QKD Keys?

We propose a new definition for quasi-trusted relays. Our quasi-trusted relays are defined as follows: (1) being honest enough to correctly follow a given multi-party finitetime communication protocol; (2) however, being under the monitoring of eavesdroppers. From the new definition, we first develop a simple 3-party quasi-trusted model called Quantum Quasi-Trusted Bridge (QQTB) model. In this ...

متن کامل

Ultrafast sources of entangled photons for quantum information processing

Recent advances in quantum information processing (QIP) have enabled practical applications of quantum mechanics in various fields such as cryptography, computation, and metrology. Most of these applications use photons as carriers of quantum information. Therefore, engineering the quantum state of photons is essential for the realization of novel QIP schemes. A practical and flexible technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015